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Stabilizing unstable periodic points of one-dimensional nonlinear systems
using delayed-feedback signals

Keiji Konishi, Morio Ishii, and Hideki Kokame
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This paper presents a technique which realizes the following operation:  a stable orbit in a one-dimensional
nonlinear system moves to an already coexisting unstable periodic point and then stabilizes on it. The tech-
nigue uses two delayed-feedback signals: the first signal destabilizes the nonlinear system such that the orbit
wanders about phase space; the second signal stabilizes the wandering orbit onto a desired unstable periodic
point. The technique would be useful for experimentalists who want to know the location of the already
coexisting unstable point outside chaotic regions. We illustrate the technique using the logistic map.
[S1063-651%96)04410-9

PACS numbes): 05.45+b, 24.60.Lz, 07.05.Dz

I. INTRODUCTION ready coexisting unstable periodic points by making weak

input signals? The methods for controlling chaos and the

In the field of nonlinear dynamics, for many years, it hadtracking techniques mentioned above cannot be directly ap-
been generally accepted that one could not harness chaofied to such a nonlinear system. The limiting factor is that
motions. In 1990, however, Ott, Grebogi, and Yorke sug-the orbit of such a nonlinear system never visits the neigh-
gested a new control methéd®GY method which can con-  borhood of the unstable periodic point. The purpose of this
vert a chaotic motion to a desired unstable periodic orbif@per is to offer a technique which overcomes this limitation
(UPO) within a chaotic attractor by making only small per- and solves the above question. The technique uses two

turbations in an accessible set of system paraméies. delayed-feedback weak signals. The first signal destabilizes
; éhe nonlinear system such that the orbit moves from the lo-

high- cation of the stable periodic point and then wanders about
phase space. The second signal then stabilizes the wandering

orbit onto the location of the already coexisting unstable pe-

riodic point. Since this technique does not require a large

chaotic systems: low-dimensional systenj8],
dimensional systemg}], time-continuous systeni$,6], and
Hamiltonian systemg7]. Several experiments have been

performed in variou_s physical systems, in_cluding a fluid SYS:alteration in the system @ priori knowledge of the system
tem [8], a mechanical systerf®], electronic system§10l,  oqation, it would be a powerful tool for experimentalists
and laser systenfd.1]. In addition, other methods based on \ynq want to obtain several periodic motions or know the
the following techniques have been proposed: the time dgpcations of the already coexisting unstable periodic points in
lay coordinated12], neuro-controller413,14], the optimal  experimental situations.

control [15], and theH™ control [16]. On the other hand,  This paper is organized as follows. Section Il describes
Pyragas has proposed tbelayed-feedback controhethod  the 1D nonlinear system to be controlled and explains our
(DFC methodl which does not requir@ priori location of

the desired UPQ6]. The DFC method has been developed

[17] and applied to physical systems: electronic circuits X(n)
[18], a laser systerfil9], and a mechanical systef20]. @ : Stable Periodic Points
In a parallel manner, several researchers have proposed @ : Unstable Periodic Points

the tracking techniques which allow one to follow UPOs
over wide ranges of parameters and through bifurcations
[21,22. The tracking techniques are powerful tools for main-
taining control of practical chaotic systems influenced by a
change in their environment. In addition, for chaotic systems
which have a variable system parameter, they are useful for
experimentalists who want to know the location or the struc-
ture of the desired UPO outside chaotic regions.

For simplicity, let us consider a one-dimensior{aD)
nonlinear system which has stable and unstable periodic
points. Here we assume that the equation of the nonlinear J 2 p
system is unknown and its paramegeis fixed at a certain
valuep, as shown in Fig. 1. In this situation, an orbit settles  F|G. 1. Schematic illustration of the coexistence stable periodic
on a stable periodic point. We address the following quespoints and unstable periodic points at the paramptep,. Thick
tion: Given such a 1D nonlinear system, how can we obfines and thin lines show locations of stable and unstable periodic
tain other periodic motions or know the locations of the al-points atp+pg, respectively.
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FIG. 2. Control system for realizing the technique.
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TABLE |. Operation of our technique.
Steg0) Stepl) Step2) Ste3) Step4)
SW OFF ON ON ON OFF
SW, OFF OFF ON ON ON

stabilizing, and a watcher. The reason we use the delayed-
feedback signal to destabilize the nonlinear system is as fol-
lows. Since it is well known that the chaotic phenomena can
be caused by the delayed-feedback signal in various fields,
such as laser systerfi23], biology, and physiology24|, we
think that, in experimental situations, the use of the delayed-
eedback signal is natural and convenient to cause chaotic
motions in nonlinear systems without making large alter-
ations. On the other hand, the reason we use the delayed-
feedback signal for stabilizing is that we want to use the

technique. A brief stability analysis is discussed in Sec. l1.tracking techniques based on the DFC method which do not
In Sec. IV we illustrate the technique using the logistic map. require a priori location of the desired unstable periodic
Finally, conclusions of this paper are presented in Sec. V. Point[22]. The watcher works not to add the signal to the

Il. CONTROL SYSTEM
Let us consider a 1D nonlinear system,
x(n+1)=g(x(n),p), x(n)eR,

g:RXR—R, (1)

wherep is the system parameter.ffis an external variable,

nonlinear system when the orbit is far from the unstable pe-
riodic pointx, ; [14]. The watcher turns o8W,, when the
following condition is satisfied:

IX(n—v)—x(n)|<e,
[X(n=])=x(n)|> ke,

Vi(j=1~»-1), (5

we can observe various bifurcation phenomena and chaoti¢here the small positive is the watcher threshold and the
behavior by varying the parameter. This paper, however, asoefficientx is set ask>1. If we do not use the watcher, a

sumes that the system paramqtes fixed at a certain value

large signal may make the nonlinear system fall into a diver-

p=p, as shown in Fig. 1. We describe such nonlinear sysgence regime.

tem as

x(n+1)="f(x(n)), 2

where

f(x(n)=g(x(n),po)- )

The equation of the whole system is given by

x(n+1)=F(x()+kX(n— ) +kgfx(n— ) =x(n)},
©)

wherek, is the feedback gain for the destabilization &gqds
that for the stabilization. The technique consists of five steps
as follows(see Fig. 2 and Table:l

This nonlinear system has stable and unstable periodic

points. We consider a stable periqdsoint and an unstable
period+ point,
X_qq:f(x_q,qfl):"':fqil(x_q,l):fq(x_q,q)y

df9(xq,1)

ax <1l Vi(i=1~q),

XV V:f(s\(v,v—l):”'

df*(x,,)

= fy_l(g(v,l) = fy(s\(v,v)y

>1 Vi(i=1~v), (4)

Wherexq i, X,.; denote theth stable period; point and the
ith unstable period-point, respectively.

In this nonlinear system an orbit settles xy xy; - The pur-
pose of the present work is to move the orbit frtxm and
then stabilize it ontox,

. Figure 2 illustrates a control sys-

Step 0 The nonlinear system runs freely without any in-
puts; hence, the orbit settles on the stable pegiod-
point X ; ;

Step 1SW, is turned on and then the feedback g&jn
varies from O tok,. to destabilize the nonlinear
system(see Fig. 3;

Step 2SW, is turned on and then the delayed-feedback
signalk{x(n—v)—x(n)} stabilizes the orbit onto
a location corresponding to the desired unstable
periodw pointX,,; (see Fig. 3

Step 3 The feedback galg, varies fromk,. to 0 with a
sufficiently slow rate;

Step 4 SW, is turned off, butSW, keeps turning on.

After Step 4, the orbit is stabilized on the desired unstable
periodw pointX,,; .

Ill. STABILITY ANALYSIS

tem which realizes the technique. The control system con- In this section we shall discuss a stability of the whole

sists of three main parts:

the nonlinear system to be corsystem described by Ed6). To begin with, we denote a

trolled, the delayed-feedback signals for destabilizing andariable state as
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FIG. 3. Schematic illustration of Steps~B. At Step 1, the
feedback gairk, varies slowly from 0 tdk,.. At Step 2, it is fixed
atk=Kk,.. At Step 3, it varies slowly fronk to O.

Xp2[x(n),x(n—1), ..., x(n—7)]T, 7)
where
T=max u,v). (8
From Eq.(7), Eqg. (6) can be rewritten as
Xn+1=h(Xp,ky) +D(Ks)Xp, €)
where
h(Xp,ky) =f(Xp) +L(ky)Xp,

f(X)=[f(x(n)),x(n),x(n—1), ..., x(n—7+1)]7,

k, i=1, j=u+l
L(ky)=[l;j]eRT DD Ii1:[0u otherwise,
-k i=1j=1
D(ky)=[d;]e R0 dy=} +ks i=1j=v+1
0 otherwise.
(10

At Step 1(i.e., k=0, k,#0) the stable period} point in
Eq. (4) is rewritten as

=ha"1(Xq1(Ky),Ky)
(11)

><q,q( ky) = h(xq,qfl( ko) ky)="--"
= hq(xq,q(ku)uku)-
The local linearized matrix at the stable periggoint is

ah(X,k,)
Hoi(ka)=——5% -

(i=1~q). (12

X=Xq.i(ky)

In the neighborhood oFTq,i(ku), the following equation is
satisfied:

el

Xgr1= (13

Hl Hq,q+1—j(ku)} 5X1!

3457

where

5Xq+1:Xq+1_xq,l(ku)-
_ (14
0X1= X1 = Xqa(ky).
Since the stable periog-point X, ;(k,) is destabilized at
Step 1, the feedback galkg. and the delay time. satisfy the
following condition:

q

)\i H Hq,q+1—j(kuc) >1

1 1
Hq,q+1—j€R(T+ )X (7+ )’

Ji(i=1~7+1), (15

where ;[ -] are the eigenvalues. Note that this condition is
necessary to generate the chaotic motion in @g. How-
ever, it is impossible to derive the sufficient condition under
which the chaotic motion occurs in E); hence, we can
not determine the propeg, k,. in advance. We have to
determine the propeu, k. by trial-and-error testing.

At Steps 2,3(i.e., kg#0, k,e[0,k,J) we focus on an
unstable period-point X, ;(k,),

X, o(Ky) = Ky)="--
=h"(X, (k) k).

h(X,,,-1(Ky), =h"" (X, 1(Ky), Ky)

(16)

The first component oK ,.i(0) agrees with the desired un-
stable period pointX,, ;,
Vi(i=1~v),

XD0)=%,,, (17)

where

X,(0)=[%}(0),%2(0), ... X7 VO] (18
We can derive the sufficient condition under which the sta-
bilizing and the tracking are achieyed. The local linearized

matrix at the unstable periodpoint X, ;(k,) is given by

ah(X,ky)

HV,i(kU)z &x

) (i=1~v).
X=X, i(ky)

(19

In a neighborhood of(,,,i(ku), Eq. (9) is governed by

8X i1 = jl]l[Hy,ﬁl,j(kuHD(kS)] 8Xy,  (20)
where
8X i 1=X 1~ Xp1(Ky),
X (21)
5X1:X1_Xv,1(ku)-

From Eq.(20) we obtain the following stability condition:

Ni jl]l[Hy,m_j<ku>+D<ks>] <1

Vk,e[O0kyol, Vi(i=1~7+1). (22
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If the feedback gairkg satisfies this condition, then the cha-
otic orbit can be stabilized and tracked by the delayed-
feedback signak{x(n—v)—x(n)}.
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IV. CONTROLLING LOGISTIC MAP
Step (1)

G rpo)3

v

In this section we test the technique on numerical experi-
ments. The logistic map is used as the 1D nonlinear system

ky

g(x(n),p)=px(n)(1—x(n)), (23

wherep is the system parameter. The parameter is fixed at
p=pgy, Where stable and unstable periodic points coexist.

The nonlinear system to be controlled is given by

f(x(n))=pox(n)(1=x(n)). (29)

Two examples are given below:
case(v=1, u=1); another is a general ca¢e>1, u>1).

A. Special casgv=1, u=1)
In this casdi.e., u=1, v=1), the signak x(n—1) moves

the orbit from X,; to X;; and then the signal
k{X(n—1)—x(n)} stabilizes the moving orbit onto, ;. It is
easy to discuss the stability of the whole system 6j.at
Steps 3,4. The functions(X,, ,k,), D(k¢) in Eg. (10) can be

described by

h(xnvku): x(n)

Pox(Nn) (L —=x(n))+Kkyx(n— 1)}

—Kks  t+Kg

The unstable period-1 point corresponding to the desifgd

is given by X, 5(k)=[(Po+ky—1)/po, (Po+k,—1)/po] "
The matrix[H; 4(k,) +D(kg)] is as follows:

2—2k,—po—ks k,+k
Hl,l(ku>+D(ks>=[ v Porre T

(26)

To verify the relation betweek, and ks, we change this
matrix to the following polynomial:

22+ (2ky+ potks—2)z— (k,+ kg)=0. (27)

The stability condition of this polynomial is
|ky+kg <1, ky—1+pe>0, —2ks—3k,—po+3>0.
(28)

Figure 4 shows the stable region on tkgk, plane. The
arrows in Fig. 4 correspond to Steps-3. The gaink,, is
allowed to be in a range ((3pg)/3,(5— py)/3). The gairk,
is chosen in a range(—1,3—pg)/2) for k,>0 or
(—kye— 1,(3—pg)/2) for k,.<O.

Figure 5 shows the numerical result. The paramptés
fixed atpy=3.50, where the stable period-4 poi@(), the

unstable period-1 poirtk, ;), and the unstable period-2 point

(X,;) coexist. At Step 0, the orbit settles ap;. At Step 1,
SW, is turned on and then the feedback gijrvaries slowly
from 0 to k,=0.08 with k,=k,{(n—500)/500 for

one of them is a special

I\
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| ///
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N

FIG. 4. Stable region oR,-kg plane for the special cage=1,
u=1): The logistic map. Three arrows correspond to Step8.1
Thick arrows represent that the gaip varies slowly at Steps 1,3,
and a thin arrow shows that the gag switches from 0 tdkg at
Step 2.

ne[500,100Q. At Step 2,SW, is turned on and then the
stabilization of the unstable period-1 poi, ;(k,o) is
achieved withks=—0.75. At Step 3, the feedback galqg
varies  slowly from Kk,=0.08 to 0 with
k,=k,{1— (n—1500)/500 for n[1500,2000. At Step 4,
SW, is turned off. After all steps have been done, the stabi-
lization of the desired unstable period-1 potqy is achieved
successfully.

B. General case(r>1, u>1)

In the general case>1, u>1), it is not easy to discuss
the stability of the whole system E(5) because the relation
betweerk, andk, is not simple. However, adjusting the gain
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FIG. 5. Stabilizing the unstable period-1 point of the logistic
map in period-4 stable state. In this experiment the following pa-
rameters are used:py=0.35, v=1, =1, k,.=0.08, ky=—0.75,
€=0.05, k=5.
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FIG. 7. Switching unstable period-1, -2 points of the logistic
map in period-4 stable state. In this experiment the following pa-
rameters are used:py=0.35, v=1,2, u=1, k,.=0.08, €=0.05,
k=5, ks=—0.75 for period-1k,=0.30 for period-2.

V. CONCLUSIONS

© |
3000 We have proposed a technique to realize the following
operation: an orbit in a stable 1D nonlinear system stabi-
lizes on an already coexisting unstable periodic point. The
FIG. 6. Stabilizing unstable periodic points of the logistic map. @dvantages of the technique may be summarized as follows.
(a) From the stable period-3 poiRg; to the unstable period-1 point (1) Once the proper gaik,c and delay timeu are found by a
%11 Po=3.84,ke=—0.75,k,c=0.03, u=3, v=1, €=0.05, k=5. trial-and-error testing, one can obtain several periodic mo-
(b) From the stable period-2 poim; to the unstable period-1 point tions by changing the period and tuning the gairks. (i)
%11 Po=3.40, ke=—0.75,kc=0.12, u=3, v=1, €=0.05, k=5, The technique allows experimentalists to know the locations
(c) From the stable period-8 poiRg; to the unstable period-2 point Of the already coexisting unstable periodic points outside
X1 Po=3.56,k=0.3, k,o=0.04, u=1, v=2, €=0.05, k=>5. chaotic regionsiii) It does not require us to make a large
' alteration in the nonlinear systeffiv) It does not require the
equation of the nonlinear system. On the other hand, the
ks, kyc to proper values by trial-and-error testing, we canmain disadvantage of the technique is that it can not be ap-
achieve the stabilization of the desired unstable periodiglied to all nonlinear systems. The reason is that there exist
point. Figure 6 shows numerical experiments fgf—X;,;  nonlinear systems which never generate chaotic motions by
at p0=3.84,x_2’i—>§<111 at p,=3.40, anck_&i—»izi atp,=3.56. using any delayed-feedback signals. We can not discriminate
The feedback gaink, varies as k,=k,(n—500) t_he available _n_onlinear systems, since it is impossible to de-
/500 for ne[500,100Q, k,=k,{1-(n—1500)/500 for  five the condition under which the delayed-feedback signal
n e[1500,2000. generates chaotic motions.

In addition, once we find the proper gai, and delay Although this paper has dealt with time-discrete one-

time hich cause the chaotic motion. the switching o era_dimensional nonlinear systems, the technique may have the
Ime u whi u : lon, WILCNING OPE€ra-y ity to control high-dimensional or time-continuous non-

tion among several unstable periodic points within the chaginear systems. Therefore, further work is to develop the
otic attractor can be achieved easily by only changing thgechnique for control of high-dimensional nonlinear systems.
period v of the watcher and tuning the feedback g&in  |n addition, we think that the technique should be imple-

Figure 7 shows the result of our numerical switching operamented to test its performance on experimental situations by

tion from the stable period-4 point to the unstable period-1using simple electronic, laser, or mechanical nonlinear sys-
-2 pOintS Q(4)i*>xl’l*>X2’i*>X4’i). tems.
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