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This paper presents a technique which realizes the following operation: a stable orbit in a one-dimensional
nonlinear system moves to an already coexisting unstable periodic point and then stabilizes on it. The tech-
nique uses two delayed-feedback signals: the first signal destabilizes the nonlinear system such that the orbit
wanders about phase space; the second signal stabilizes the wandering orbit onto a desired unstable periodic
point. The technique would be useful for experimentalists who want to know the location of the already
coexisting unstable point outside chaotic regions. We illustrate the technique using the logistic map.
@S1063-651X~96!04410-8#
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I. INTRODUCTION

In the field of nonlinear dynamics, for many years, it had
been generally accepted that one could not harness chaotic
motions. In 1990, however, Ott, Grebogi, and Yorke sug-
gested a new control method~OGY method! which can con-
vert a chaotic motion to a desired unstable periodic orbit
~UPO! within a chaotic attractor by making only small per-
turbations in an accessible set of system parameters@1,2#.
The OGY method has been developed to control various
chaotic systems: low-dimensional systems@3#, high-
dimensional systems@4#, time-continuous systems@5,6#, and
Hamiltonian systems@7#. Several experiments have been
performed in various physical systems, including a fluid sys-
tem @8#, a mechanical system@9#, electronic systems@10#,
and laser systems@11#. In addition, other methods based on
the following techniques have been proposed: the time de-
lay coordinates@12#, neuro-controllers@13,14#, the optimal
control @15#, and theH` control @16#. On the other hand,
Pyragas has proposed thedelayed-feedback controlmethod
~DFC method! which does not requirea priori location of
the desired UPO@6#. The DFC method has been developed
@17# and applied to physical systems: electronic circuits
@18#, a laser system@19#, and a mechanical system@20#.

In a parallel manner, several researchers have proposed
the tracking techniques which allow one to follow UPOs
over wide ranges of parameters and through bifurcations
@21,22#. The tracking techniques are powerful tools for main-
taining control of practical chaotic systems influenced by a
change in their environment. In addition, for chaotic systems
which have a variable system parameter, they are useful for
experimentalists who want to know the location or the struc-
ture of the desired UPO outside chaotic regions.

For simplicity, let us consider a one-dimensional~1D!
nonlinear system which has stable and unstable periodic
points. Here we assume that the equation of the nonlinear
system is unknown and its parameterp is fixed at a certain
valuep0 as shown in Fig. 1. In this situation, an orbit settles
on a stable periodic point. We address the following ques-
tion: Given such a 1D nonlinear system, how can we ob-
tain other periodic motions or know the locations of the al-

ready coexisting unstable periodic points by making weak
input signals? The methods for controlling chaos and the
tracking techniques mentioned above cannot be directly ap-
plied to such a nonlinear system. The limiting factor is that
the orbit of such a nonlinear system never visits the neigh-
borhood of the unstable periodic point. The purpose of this
paper is to offer a technique which overcomes this limitation
and solves the above question. The technique uses two
delayed-feedback weak signals. The first signal destabilizes
the nonlinear system such that the orbit moves from the lo-
cation of the stable periodic point and then wanders about
phase space. The second signal then stabilizes the wandering
orbit onto the location of the already coexisting unstable pe-
riodic point. Since this technique does not require a large
alteration in the system ora priori knowledge of the system
equation, it would be a powerful tool for experimentalists
who want to obtain several periodic motions or know the
locations of the already coexisting unstable periodic points in
experimental situations.

This paper is organized as follows. Section II describes
the 1D nonlinear system to be controlled and explains our

FIG. 1. Schematic illustration of the coexistence stable periodic
points and unstable periodic points at the parameterp5p0. Thick
lines and thin lines show locations of stable and unstable periodic
points atpÞp0, respectively.
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technique. A brief stability analysis is discussed in Sec. III.
In Sec. IV we illustrate the technique using the logistic map.
Finally, conclusions of this paper are presented in Sec. V.

II. CONTROL SYSTEM

Let us consider a 1D nonlinear system,

x~n11!5g„x~n!,p…, x~n!PR, g:R3R→R, ~1!

wherep is the system parameter. Ifp is an external variable,
we can observe various bifurcation phenomena and chaotic
behavior by varying the parameter. This paper, however, as-
sumes that the system parameterp is fixed at a certain value
p5p0 as shown in Fig. 1. We describe such nonlinear sys-
tem as

x~n11!5 f „x~n!…, ~2!

where

f „x~n!…,g„x~n!,p0…. ~3!

This nonlinear system has stable and unstable periodic
points. We consider a stable period-q point and an unstable
period-n point,

x̄q,q5 f ~ x̄q,q21!5•••5 f q21~ x̄q,1!5 f q~ x̄q,q!,

Ud fq~ x̄q,i !dx U,1 ; i ~ i51;q!,

x̂n,n5 f ~ x̂n,n21!5•••5 f n21~ x̂n,1!5 f n~ x̂n,n!,

Ud fn~ x̂n,i !

dx U.1 ; i ~ i51;n!, ~4!

wherex̄q,i , x̂n,i denote thei th stable period-q point and the
i th unstable period-n point, respectively.

In this nonlinear system an orbit settles onx̄q,i . The pur-
pose of the present work is to move the orbit fromx̄q,i and
then stabilize it ontox̂n,i . Figure 2 illustrates a control sys-
tem which realizes the technique. The control system con-
sists of three main parts: the nonlinear system to be con-
trolled, the delayed-feedback signals for destabilizing and

stabilizing, and a watcher. The reason we use the delayed-
feedback signal to destabilize the nonlinear system is as fol-
lows. Since it is well known that the chaotic phenomena can
be caused by the delayed-feedback signal in various fields,
such as laser systems@23#, biology, and physiology@24#, we
think that, in experimental situations, the use of the delayed-
feedback signal is natural and convenient to cause chaotic
motions in nonlinear systems without making large alter-
ations. On the other hand, the reason we use the delayed-
feedback signal for stabilizing is that we want to use the
tracking techniques based on the DFC method which do not
require a priori location of the desired unstable periodic
point @22#. The watcher works not to add the signal to the
nonlinear system when the orbit is far from the unstable pe-
riodic point x̂n,i @14#. The watcher turns onSWW when the
following condition is satisfied:

ux~n2n!2x~n!u,e,

ux~n2 j !2x~n!u.ke, ; j ~ j51;n21!, ~5!

where the small positivee is the watcher threshold and the
coefficientk is set ask.1. If we do not use the watcher, a
large signal may make the nonlinear system fall into a diver-
gence regime.

The equation of the whole system is given by

x~n11!5 f „x~n!…1kux~n2m!1ks$x~n2n!2x~n!%,
~6!

whereku is the feedback gain for the destabilization andks is
that for the stabilization. The technique consists of five steps
as follows~see Fig. 2 and Table I!:

Step 0 The nonlinear system runs freely without any in-
puts; hence, the orbit settles on the stable period-q
point x̄q,i ;

Step 1SW1 is turned on and then the feedback gainku
varies from 0 tokuc to destabilize the nonlinear
system~see Fig. 3!;

Step 2SW2 is turned on and then the delayed-feedback
signalks$x(n2n)2x(n)% stabilizes the orbit onto
a location corresponding to the desired unstable
period-n point x̂n,i ~see Fig. 3!;

Step 3 The feedback gainku varies fromkuc to 0 with a
sufficiently slow rate;

Step 4SW1 is turned off, butSW2 keeps turning on.

After Step 4, the orbit is stabilized on the desired unstable
period-n point x̂n,i .

III. STABILITY ANALYSIS

In this section we shall discuss a stability of the whole
system described by Eq.~6!. To begin with, we denote a
variable state as

FIG. 2. Control system for realizing the technique.

TABLE I. Operation of our technique.

Step~0! Step~1! Step~2! Step~3! Step~4!

SW1 OFF ON ON ON OFF
SW2 OFF OFF ON ON ON
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Xn,@x~n!,x~n21!, . . . ,x~n2t!#T, ~7!

where

t5max~m,n!. ~8!

From Eq.~7!, Eq. ~6! can be rewritten as

Xn115h~Xn ,ku!1D~ks!Xn , ~9!

where

h~Xn ,ku!5f~Xn!1L ~ku!Xn ,

f~Xn!5@ f „x~n!…,x~n!,x~n21!, . . . ,x~n2t11!#T,

L ~ku!5@ l i j #PR~t11!3~t11! l i j5 H ku0 i51, j5m11
otherwise,

D~ks!5@di j #PR~t11!3~t11! di j5H 2ks
1ks
0

i51,j51
i51,j5n11
otherwise.

~10!

At Step 1~i.e., ks50, kuÞ0! the stable period-q point in
Eq. ~4! is rewritten as

X̄q,q~ku!5h„X̄q,q21~ku!,ku…5•••5hq21
„X̄q,1~ku!,ku…

5hq„X̄q,q~ku!,ku…. ~11!

The local linearized matrix at the stable period-q point is

Hq,i~ku!5
]h~X,ku!

]X U
X5X̄q,i ~ku!

~ i51;q!. ~12!

In the neighborhood ofX̄q,i(ku), the following equation is
satisfied:

dXq115F)
j51

q

Hq,q112 j~ku!GdX1 , ~13!

where

dXq115Xq112X̄q,1~ku!,
~14!

dX15X12X̄q,1~ku!.

Since the stable period-q point X̄q,i(ku) is destabilized at
Step 1, the feedback gainkuc and the delay timem satisfy the
following condition:

Ul iF)
j51

q

Hq,q112 j~kuc!GU.1, Hq,q112 jPR~t11!3~t11!,

' i ~ i51;t11!, ~15!

whereli@•# are the eigenvalues. Note that this condition is
necessary to generate the chaotic motion in Eq.~9!. How-
ever, it is impossible to derive the sufficient condition under
which the chaotic motion occurs in Eq.~9!; hence, we can
not determine the properm, kuc in advance. We have to
determine the properm, kuc by trial-and-error testing.

At Steps 2,3~i.e., ksÞ0, kuP[0,kuc] ! we focus on an
unstable period-n point X̂n,i(ku),

X̂n,n~ku!5h„X̂n,n21~ku!,ku…5•••5hn21
„X̂n,1~ku!,ku…

5hn
„X̂n,n~ku!,ku…. ~16!

The first component ofX̂n,i~0! agrees with the desired un-
stable period-n point x̂n,i ,

x̂n,i
~1!~0!5 x̂n,i , ; i ~ i51;n!, ~17!

where

X̂n,i~0!5@ x̂n,i
~1!~0!,x̂n,i

~2!~0!, . . . ,x̂n,i
~t11!~0!#T. ~18!

We can derive the sufficient condition under which the sta-
bilizing and the tracking are achieved. The local linearized
matrix at the unstable period-n point X̂n,i(ku) is given by

Hn,i~ku!5
]h~X,ku!

]X U
X5X̂n,i ~ku!

~ i51;n!. ~19!

In a neighborhood ofX̂n,i(ku), Eq. ~9! is governed by

dXn115F)
j51

n

@Hn,n112 j~ku!1D~ks!#GdX1 , ~20!

where

dXn115Xn112X̂n,1~ku!,
~21!

dX15X12X̂n,1~ku!.

From Eq.~20! we obtain the following stability condition:

Ul iF)
j51

n

@Hn,n112 j~ku!1D~ks!#GU,1,

;kuP@0,kuc#, ; i ~ i51;t11!. ~22!

FIG. 3. Schematic illustration of Steps 1;3. At Step 1, the
feedback gainku varies slowly from 0 tokuc . At Step 2, it is fixed
at k5kuc . At Step 3, it varies slowly fromkuc to 0.
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If the feedback gainks satisfies this condition, then the cha-
otic orbit can be stabilized and tracked by the delayed-
feedback signalks$x(n2n)2x(n)%.

IV. CONTROLLING LOGISTIC MAP

In this section we test the technique on numerical experi-
ments. The logistic map is used as the 1D nonlinear system

g„x~n!,p…5px~n!„12x~n!…, ~23!

wherep is the system parameter. The parameter is fixed at
p5p0 , where stable and unstable periodic points coexist.
The nonlinear system to be controlled is given by

f „x~n!…5p0x~n!„12x~n!…. ~24!

Two examples are given below: one of them is a special
case~n51, m51!; another is a general case~n.1, m.1!.

A. Special case„n51, m51…

In this case~i.e.,m51, n51!, the signalkux(n21) moves
the orbit from x̄q,i to x̂1,1, and then the signal
ks$x(n21)2x(n)% stabilizes the moving orbit ontox̂1,1. It is
easy to discuss the stability of the whole system Eq.~6! at
Steps 3,4. The functionsh~Xn ,ku!, D(ks) in Eq. ~10! can be
described by

h~Xn ,ku!5Fp0x~n!„12x~n!…1kux~n21!

x~n! G ,
D~ks!5F2ks

0
1ks
0 G . ~25!

The unstable period-1 point corresponding to the desiredx̂1,1
is given by X̂1,1(ku)5[(p01ku21)/p0 ,(p01ku21)/p0]

T.
The matrix@H1,1(ku)1D(ks)# is as follows:

H1,1~ku!1D~ks!5F222ku2p02ks
1

ku1ks
0 G . ~26!

To verify the relation betweenku and ks , we change this
matrix to the following polynomial:

z21~2ku1p01ks22!z2~ku1ks!50. ~27!

The stability condition of this polynomial is

uku1ksu,1, ku211p0.0, 22ks23ku2p013.0.
~28!

Figure 4 shows the stable region on theku-ks plane. The
arrows in Fig. 4 correspond to Steps 1;3. The gainkuc is
allowed to be in a range ((32p0)/3,(52p0)/3). The gainks
is chosen in a range~21,~32p0!/2! for kuc.0 or
(2kuc21,(32p0)/2) for kuc,0.

Figure 5 shows the numerical result. The parameterp is
fixed atp053.50, where the stable period-4 point (x̄4,i), the
unstable period-1 point~x̂1,1!, and the unstable period-2 point
( x̂2,i) coexist. At Step 0, the orbit settles onx̄4,i . At Step 1,
SW1 is turned on and then the feedback gainku varies slowly
from 0 to kuc50.08 with ku5kuc(n2500)/500 for

nP@500,1000#. At Step 2,SW2 is turned on and then the
stabilization of the unstable period-1 pointX̂1,1(kuc) is
achieved withks520.75. At Step 3, the feedback gainku
varies slowly from kuc50.08 to 0 with
ku5kuc$12(n21500)/500% for nP@1500,2000#. At Step 4,
SW1 is turned off. After all steps have been done, the stabi-
lization of the desired unstable period-1 pointx̂1,1 is achieved
successfully.

B. General case„n>1, m>1…

In the general case~n.1, m.1!, it is not easy to discuss
the stability of the whole system Eq.~6! because the relation
betweenku andks is not simple. However, adjusting the gain

FIG. 4. Stable region onku-ks plane for the special case~n51,
m51!: The logistic map. Three arrows correspond to Steps 1;3.
Thick arrows represent that the gainku varies slowly at Steps 1,3,
and a thin arrow shows that the gainks switches from 0 toks at
Step 2.

FIG. 5. Stabilizing the unstable period-1 point of the logistic
map in period-4 stable state. In this experiment the following pa-
rameters are used:p050.35, n51, m51, kuc50.08, ks520.75,
e50.05,k55.
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ks , kuc to proper values by trial-and-error testing, we can
achieve the stabilization of the desired unstable periodic
point. Figure 6 shows numerical experiments forx̄3,i→ x̂1,1
at p053.84,x̄2,i→ x̂1,1 at p053.40, andx̄8,i→ x̂2,i at p053.56.
The feedback gain ku varies as ku5kuc(n2500)
/500 for nP@500,1000#, ku5kuc$12(n21500)/500% for
nP@1500,2000#.

In addition, once we find the proper gainkuc and delay
timem which cause the chaotic motion, the switching opera-
tion among several unstable periodic points within the cha-
otic attractor can be achieved easily by only changing the
period n of the watcher and tuning the feedback gainks .
Figure 7 shows the result of our numerical switching opera-
tion from the stable period-4 point to the unstable period-1,
-2 points (x̄4,i→ x̂1,1→ x̂2,i→ x̄4,i).

V. CONCLUSIONS

We have proposed a technique to realize the following
operation: an orbit in a stable 1D nonlinear system stabi-
lizes on an already coexisting unstable periodic point. The
advantages of the technique may be summarized as follows.
~i! Once the proper gainkuc and delay timem are found by a
trial-and-error testing, one can obtain several periodic mo-
tions by changing the periodn and tuning the gainks . ~ii !
The technique allows experimentalists to know the locations
of the already coexisting unstable periodic points outside
chaotic regions.~iii ! It does not require us to make a large
alteration in the nonlinear system.~iv! It does not require the
equation of the nonlinear system. On the other hand, the
main disadvantage of the technique is that it can not be ap-
plied to all nonlinear systems. The reason is that there exist
nonlinear systems which never generate chaotic motions by
using any delayed-feedback signals. We can not discriminate
the available nonlinear systems, since it is impossible to de-
rive the condition under which the delayed-feedback signal
generates chaotic motions.

Although this paper has dealt with time-discrete one-
dimensional nonlinear systems, the technique may have the
ability to control high-dimensional or time-continuous non-
linear systems. Therefore, further work is to develop the
technique for control of high-dimensional nonlinear systems.
In addition, we think that the technique should be imple-
mented to test its performance on experimental situations by
using simple electronic, laser, or mechanical nonlinear sys-
tems.
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